BPSK QPSK 16QAM 64QAM modulation python code script
This page covers BPSK, QPSK, 16QAM and 64QAM modulation python code script.
Introduction: Digital modulation techniques such as QPSK, 16QAM and 64QAM helps in achieving bandwidth efficiency by mapping multiple bits on single carrier. BPSK is the most robust modulation technique used for long distance communication and pilot subcarrier mapping.
Data mapping or modulation Python script
Following python code can be used to map digital binary data as per different modulation constellation points such as BPSK, QPSK, 16QAM and 64QAM.
# Binary data generator (1's and 0's as per user defined length)
import random
import numpy as np
import numpy
import matplotlib.pyplot as plt
# Python code to generate binary stream of data
input_data = ""
len1 = 1000 # length of input data
for i in range(len1):
temp1 = str(random.randint(0, 1))
input_data += temp1
print(input_data)
input_data1 = [int(i) for i in input_data] # convert string to list
print(input_data1)
# Setting up parameters such as modulation type, number of bits per carrier (nc) and norm_factor
modulation_type = int(input("Enter modulation type (0: BPSK, 1: QPSK, 2:16QAM, 3: 64QAM: "))
print(modulation_type)
norm_factor = [1.0, 0.7071, 0.3162, 0.1543]
nc = [1, 2, 4, 6]
k = norm_factor[modulation_type]
print(k)
mode = nc[modulation_type]
print(mode)
M0 = []
match mode:
case 1:
M0 = np.array([1, -1])
i = len(M0)
b = np.zeros(i)
for i in M0:
M0 = numpy.multiply(M0, k)
plt.plot(M0.real, M0.imag, "g*")
plt.title("Figure-1 : BPSK constellation")
plt.show()
case 2:
M0 = np.array([1. + 1.j, -1. + 1.j, 1. - 1.j, -1. - 1.j])
i = len(M0)
b = np.zeros(i)
for i in M0:
N0 = numpy.multiply(M0, k)
plt.plot(M0.real, M0.imag, "g*")
plt.title("Figure-2 : QPSK constellation")
plt.show()
case 4:
M0 = np.array([1. + 1.j, 1. + 3.j, 1. - 1.j, 1. - 3.j, 3. + 1.j, 3. + 3.j,
3. - 1.j, 3. - 3.j, -1. + 1.j, -1. + 3.j, -1. - 1.j, -1. - 3.j, -3. + 1.j,
-3. + 3.j, -3. - 1.j, -3. - 3.j])
i = len(M0)
b = np.zeros(i)
for i in M0:
M0 = numpy.multiply(M0, k)
plt.plot(M0.real, M0.imag, "g*")
plt.title("Figure-3 : 16QAM constellation")
plt.show()
case 6:
M0 = np.array([3 + 3j, 3 + 1j, 3 + 5j, 3 + 7j, 3 - 3j, 3 - 1j, 3 - 5j,
3 - 7j, 1 + 3j, 1 + 1j, 1 + 5j, 1 + 7j, 1 - 3j, 1 - 1j, 1 - 5j, 1 - 7j,
5 + 3j, 5 + 1j, 5 + 5j, 5 + 7j, 5 - 3j, 5 - 1j, 5 - 5j, 5 - 7j, 7 + 3j,
7 + 1j, 7 + 5j, 7 + 7j, 7 - 3j, 7 - 1j, 7 - 5j, 7 - 7j, -3 + 3j, 3 + 1j,
-3 + 5j, -3 + 7j, -3 - 3j, -3 - 1j, -3 - 5j, -3 - 7j, -1 + 3j, -1 + 1j,
-1 + 5j, -1 + 7j, -1 - 3j, -1 - 1j, -1 - 5j, -1 - 7j, -5 + 3j, -5 + 1j,
-5 + 5j, -5 + 7j, -5 - 3j, -5 - 1j, -5 - 5j, -5 - 7j, -7 + 3j, -7 + 1j,
-7 + 5j, -7 + 7j, -7 - 3j, -7 - 1j, -7 - 5j, -7 - 7j])
i = len(M0)
b = np.zeros(i)
for i in M0:
M0 = numpy.multiply(M0, k)
plt.plot(M0.real, M0.imag, "g*")
plt.title("Figure-4 : 64QAM constellation")
plt.show()
# checking length of data to add padding zero at the end if required
remainder = len1 % mode
print(remainder)
if remainder != 0:
remainder = mode-remainder
input_data1 = np.pad(input_data1, (0, remainder))
len1 = len(input_data1)
len2 = int(len1/mode)
input_data_r = np.reshape(input_data1, (len2, mode))
print(input_data_r)
s1 = input_data
s2 = []
chunks = [s1[i:i+mode] for i in range(0, len(s1), mode)]
for piece in chunks:
temp = int(piece, 2)
print(temp, piece)
s2.append(temp)
map_out = []
for value in s2:
map_out.append(M0[value])
print(M0[value])
import random
import numpy as np
import numpy
import matplotlib.pyplot as plt
# Python code to generate binary stream of data
input_data = ""
len1 = 1000 # length of input data
for i in range(len1):
temp1 = str(random.randint(0, 1))
input_data += temp1
print(input_data)
input_data1 = [int(i) for i in input_data] # convert string to list
print(input_data1)
# Setting up parameters such as modulation type, number of bits per carrier (nc) and norm_factor
modulation_type = int(input("Enter modulation type (0: BPSK, 1: QPSK, 2:16QAM, 3: 64QAM: "))
print(modulation_type)
norm_factor = [1.0, 0.7071, 0.3162, 0.1543]
nc = [1, 2, 4, 6]
k = norm_factor[modulation_type]
print(k)
mode = nc[modulation_type]
print(mode)
M0 = []
match mode:
case 1:
M0 = np.array([1, -1])
i = len(M0)
b = np.zeros(i)
for i in M0:
M0 = numpy.multiply(M0, k)
plt.plot(M0.real, M0.imag, "g*")
plt.title("Figure-1 : BPSK constellation")
plt.show()
case 2:
M0 = np.array([1. + 1.j, -1. + 1.j, 1. - 1.j, -1. - 1.j])
i = len(M0)
b = np.zeros(i)
for i in M0:
N0 = numpy.multiply(M0, k)
plt.plot(M0.real, M0.imag, "g*")
plt.title("Figure-2 : QPSK constellation")
plt.show()
case 4:
M0 = np.array([1. + 1.j, 1. + 3.j, 1. - 1.j, 1. - 3.j, 3. + 1.j, 3. + 3.j,
3. - 1.j, 3. - 3.j, -1. + 1.j, -1. + 3.j, -1. - 1.j, -1. - 3.j, -3. + 1.j,
-3. + 3.j, -3. - 1.j, -3. - 3.j])
i = len(M0)
b = np.zeros(i)
for i in M0:
M0 = numpy.multiply(M0, k)
plt.plot(M0.real, M0.imag, "g*")
plt.title("Figure-3 : 16QAM constellation")
plt.show()
case 6:
M0 = np.array([3 + 3j, 3 + 1j, 3 + 5j, 3 + 7j, 3 - 3j, 3 - 1j, 3 - 5j,
3 - 7j, 1 + 3j, 1 + 1j, 1 + 5j, 1 + 7j, 1 - 3j, 1 - 1j, 1 - 5j, 1 - 7j,
5 + 3j, 5 + 1j, 5 + 5j, 5 + 7j, 5 - 3j, 5 - 1j, 5 - 5j, 5 - 7j, 7 + 3j,
7 + 1j, 7 + 5j, 7 + 7j, 7 - 3j, 7 - 1j, 7 - 5j, 7 - 7j, -3 + 3j, 3 + 1j,
-3 + 5j, -3 + 7j, -3 - 3j, -3 - 1j, -3 - 5j, -3 - 7j, -1 + 3j, -1 + 1j,
-1 + 5j, -1 + 7j, -1 - 3j, -1 - 1j, -1 - 5j, -1 - 7j, -5 + 3j, -5 + 1j,
-5 + 5j, -5 + 7j, -5 - 3j, -5 - 1j, -5 - 5j, -5 - 7j, -7 + 3j, -7 + 1j,
-7 + 5j, -7 + 7j, -7 - 3j, -7 - 1j, -7 - 5j, -7 - 7j])
i = len(M0)
b = np.zeros(i)
for i in M0:
M0 = numpy.multiply(M0, k)
plt.plot(M0.real, M0.imag, "g*")
plt.title("Figure-4 : 64QAM constellation")
plt.show()
# checking length of data to add padding zero at the end if required
remainder = len1 % mode
print(remainder)
if remainder != 0:
remainder = mode-remainder
input_data1 = np.pad(input_data1, (0, remainder))
len1 = len(input_data1)
len2 = int(len1/mode)
input_data_r = np.reshape(input_data1, (len2, mode))
print(input_data_r)
s1 = input_data
s2 = []
chunks = [s1[i:i+mode] for i in range(0, len(s1), mode)]
for piece in chunks:
temp = int(piece, 2)
print(temp, piece)
s2.append(temp)
map_out = []
for value in s2:
map_out.append(M0[value])
print(M0[value])
Input (User Interface)
Enter modulation type (0: BPSK, 1: QPSK, 2:16QAM, 3: 64QAM:)
Output plots for BPSK, QPSK, 16QAM and 64QAM mapping
Following are output plots for various modulation types as per input provided in python command prompt.
BPSK python constellation plot
QPSK python constellation plot
➨Also refer python code for QPSK mapper and QPSK demapper >>.
16QAM python constellation plot
64QAM python constellation plot
Other useful DSP codes in Python
Correlation python script
Python programming tutorial
Convolution python script
BPSK QPSK 16QAM 64QAM modulation
16-Point FFT code
OFDM transmitter simulation code
Rayleigh Fading Channel
Rician Fading Channel
ASK modulation python code
FSK modulation python code
PSK modulation python code
Useful Links to MATLAB codes
OFDM Preamble generation
Time off estimation corr
Freq off estimation corr
channel estimation
11a WLAN channel
PN sequence generation
OFDMA Tx Rx
AES DES
carrier aggregation
CCDF
FIR Filter
IIR Filter
Low Pass FIR
Viterbi decoder
CRC8 CRC32