

 http://www.rfwireless-world.com

 Asynchronous FIFO Design

2.1 Introduction:

An Asynchronous FIFO Design refers to a FIFO Design where in the data values are

written to the FIFO memory from one clock domain and the data values are read from a different

clock domain, where in the two clock domains are Asynchronous to each other. Asynchronous

FIFO’s are widely used to safely pass the data from one clock domain to another clock domain

 Fig 2.1 Asynchronous FIFO Design

2.2 DESCRIPTION OF FIFO DESIGNED

 The above figure’s refers of an Asynchronous FIFO, it will be better if each block is

explained

 FIFO MEMROY

This is the heart of the FIFO, the depth of memory is 16 bits and width is 8 bits,

It has an the following inputs

Write Data (8 bit), Write Enable, Read Enable, Write Clock, Write address (4 bit), Read Address

(4 bit) And an output i.e. Read Data (8 bit)

 Data which is to be written and the address where it has to be written is supplied at the

input port write data and write address. At the positive edge of the clock when Write enable is

 http://www.rfwireless-world.com

enabled so now the data is been written into the FIFO memory, now it has to be Read out, for

that to happen Read enable should be Enabled and the address from which the data has to be read

should be specified at the input port Read address.

 This is the Memory operation in brief .now we have to control the memory in such a way

that it meets the requirements of the FIFO.

 BINARY & GRAY COUNTER

We need to design a counter which can give Binary and Gray output’s, the need for

Binary counter is to address the FIFO MEMORY i.e. Write and Read address. And the need of

Gray counter is for addressing Read and Write pointers.

 Once the counter with binary and Gray code output is designed it is then Port mapped

with Memory’s Read address, write address, Read pointer, Write Pointer.

 The Use Full and Empty logic for addressing the memory

Empty: the counter takes Empty signal and increments the Read address depending on this.

Full: when ever the Full signal is high the counter should not increment write address

If (~EMPTY) If (~FULL)

 Increment Read Address Increment Write Address

 Else Else

 No Increment no increment

 SYNCHRONIZER’S

Synchronizers are very simple in operation; they are made of 2 D Flip Flop’s.

As the FIFO is operating at 2 different clock domains so there is a need to synchronize the Write

and Read pointers for generating empty and full logic which in turn is used for addressing the

FIFO memory.

The Figure below shows how synchronization takes place; the logic behind this is very simple.

What we are trying to do over here is , passing the Write Pointer to a D Flip Flop which is

driven by the Read clock and in the same manner the Read pointer is fed to a D Flip Flop

which is driven by Write Clock, so as a result of this we get Read Pointer (which is

operating under Read clock) and Synchronized Write Pointer which is also operating

under Read clock, and the same with Write pointer and Synchronized Read Pointer, so

now we can compare them and derive a logic for Generating Empty and Full conditions,

which is the most important design part of this FIFO

 http://www.rfwireless-world.com

Fig 2.2: Synchronizer Logic

 EMPTY AND FULL LOGIC BLOCK

In the above section we discussed mainly on the synchronizing part,

 I think the figures below are self explanatory

 Fig: 2.3 Empty and Full Logic

If ((synchronized Write pointer = = Read pointer) &&

 (Synchronized Write pointer [3:0] = = Read pointer [3:0] then

Empty=1;

If (Write pointer= = {~ synchronized Read pointer [4:3], synchronized Read pointer [2:0]) then

Full=1;

 Fig: Empty & Full logic generation

2.3 RESULT ANALYSIS (OUTPUT ANALYSIS)

2.3.1 Output Waveform 1

 http://www.rfwireless-world.com

 Fig 2.4: Output Waveform 1

 Fig 2.5 Output Waveform 2

The above waveform is analyzed below,

 The Read clock is operating at 50 MHz and Write Clock is operating at 10 MHz

 System is first Reset and then Set, the operation begins

 To start with the Write_enable signal is high(i.e. Write operation is active)

 Read_enable is set to ‘0’ (Read operation disabled)

 Input data is fed into the FIFO memory and its being written in the memory as shown in

Fig

 To start with values 5,6,7,8,9,23,31,41 are written into FIFO memory as you can see in

Fig 2..

 The write address keeps on incrementing because(Write_enable= = 1)

 At 500 ns Read Enable is set to ‘1’(enabled) and the Read address starts incrementing

and data which was written into the FIFO memory comes out in the order it was written(

 http://www.rfwireless-world.com

First In First out i.e. The Data which was written first into the FIFO memory is being

Read out first i.e. 5 is readout first then 6 ,7,8,23,31,41

 We can also notice that the Read and Write Pointer’s are synchronized

 The Empty and full conditions will be explained in next waveforms

2.3.2 Output Waveform 2

 Fig 2.6: Output Waveform 3

The above waveform is analyzed below,

 Once the FIFO memory is filled the Full flag goes high.

 http://www.rfwireless-world.com

 Fig 2.7: Output Waveform 4

 As we can see from the waveform when the write_Address reached 15 i.e.

The FIFO memory is filled hence the Full signal goes high

 Empty signal goes high when ever the data which is being written into the memory is

Read out

2.3.3 Output Waveform 3

 Fig 2.8: Output Waveform 4

 All the operations shown again for all cases

 http://www.rfwireless-world.com

 Fig 2.8(a): FIFO operation for different clock frequencies

> Here we can notice that even if we change the write and read clock frequencies the FIFO

design works

 2.4: TEST BENCH FOR FIFO

 Fig 2.9: Test Bench

2.3.1Stimulus Block

 http://www.rfwireless-world.com

 We now write the stimulus block to check if the Asynchronous FIFO Design is

functioning correctly. In this case we must control the following

 Write & Read Clock’s

 Write & Read Resets

 Write & Read Enable

 Write Data

So that the regular function of the Asynchronous FIFO and the Reset and Enable

Mechanism are both tested, we use the Waveform shown in Fig 2.9(a) to test the Design,

Waveform’s for Write clock, Read Clock, Write & Read Resets , Write & Read Enable are

shown.

 Data out, Empty and full signal’s are then monitored. as we can see in the fig 2.9(b)

Stimulus Block
module tb_top();

reg wr_clk,rd_clk;

reg[7:0] data_in;
wire[7:0] data_out;

wire rd_empty,wr_full;
reg reset_w;

reg reset_r;

reg write_enable,read_enable;

top top_1(.wr_data(data_in),

 .rd_data(data_out),
 .wr_clk(wr_clk),

 .rd_clk(rd_clk),

 .w_reset(reset_w),
 .r_reset(reset_r),

 .write_enable(write_enable) ,

 .read_enable(read_enable),

 .empty(rd_empty),

 .full(wr_full));

initial
begin

 #0data_in=8'h0;

 #50_000 data_in=8'b00000001; // DATA WHICH IS SUPPLIED
 #80_000 data_in=8'h2;

 #70_000 data_in=8'h3;

 #79_000 data_in=8'h4;
 #80_000 data_in=8'h5;

 #40_000 data_in=8'h6;

 #60_000 data_in=8'h7;
 #50_000 data_in=8'h8;

 #50_000 data_in=8'h9;

 #20_000 data_in=8'h10;

 #70_000 data_in=8'h11;

 #80_000 data_in=8'h12;

 #19_000 data_in=8'h13;
 #10_000 data_in=8'h14;

 #80_000 data_in=8'h15;

end

initial

begin
 wr_clk=1'b0;

 write_enable=1'b0;

 http://www.rfwireless-world.com

 read_enable=1'b0;

 end
 initial

 always

 #50000 wr_clk=~wr_clk; //end // READ AND WRITE CLOCK GENERATION
 rd_clk=1'b0;

 initial

 begin
 always

 #10000 rd_clk=~rd_clk;

 end
initial

 reset_r=1'b0;

 begin
 initial

 #5000 reset_r=1'b1;

 //end
initial

 reset_w =1'b0;

 initial

 #5000 reset_w=1'b1;

initial

 #5000 write_enable=1'b1;

 initial
 # 50000 read_enable=1'b1;

 initial
 begin

 #1000000000 $finish; end

 initial

 $monitor("$time data_out,empty ,full= %d %d %d",data_out,rd_empty,wr_full);

endmodule

 Once the stimulus Block is completed, we are ready to run the stimulation

and verify the functional correctness of the design block. The output obtained when the

stimulus and design blocks are stimulated is shown in Fig 2.9(a) and 2.9(b)

 http://www.rfwireless-world.com

 Fig 2.9(a) : Stimulus Waveform

 http://www.rfwireless-world.com

 Fig 2.9(b): Monitoring output’s (out put of stimulus)

2.5 Logic Synthesis

Logic Synthesis is the process of converting a high level description of the design into an

optimized, gate-level representation, using the cells in the technology library.

 Logic Synthesis tool accepts high level descriptions at the register transfer Level (RTL).

And a technology library produces an optimized gate level net list, Translation, Logic

optimization, and technology mapping are the internal process in a logic synthesis tool and

are normally invisible to the user. Not all verilog constructs are acceptable to a logic synthesis

tool.

Synthesis Summary For Asynchronous FIFO

===

* Advanced HDL Synthesis *

===

Advanced RAM inference ...

Advanced multiplier inference ...

Advanced Registered AddSub inference ...

 http://www.rfwireless-world.com

Dynamic shift register inference ...

===

HDL Synthesis Report

Macro Statistics

LUT RAMs : 1

 16x8-bit dual-port distributed RAM: 1

Adders/Subtractors : 2

 5-bit adder : 2

Registers : 10

 1-bit register : 2

 5-bit register : 8

Comparators : 3

 4-bit comparator equal : 1

 5-bit comparator equal : 2

Xors : 8

 1-bit xor2 : 8

===

* Final Report *

===

Final Results

RTL Top Level Output File Name : top.ngr

Top Level Output File Name : top

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : NO

Design Statistics

IOs : 24

Macro Statistics :

RAM : 1

16x8-bit dual-port distributed RAM: 1

Registers : 10

1-bit register : 2

5-bit register : 8

Comparators : 3

4-bit comparator equal : 1

5-bit comparator equal : 2

Cell Usage :

BELS : 39

LUT1 : 4

LUT1_D : 1

LUT2 : 16

LUT2_D : 1

LUT2_L : 3

LUT3 : 2

LUT3_L : 4

LUT4 : 4

LUT4_L : 4

FlipFlops/Latches : 41

FDC : 1

 http://www.rfwireless-world.com

FDCE : 21

FDP : 1

FDR : 18

RAMS : 8

RAM16X1D : 8

Clock Buffers : 2

BUFGP : 2

IO Buffers : 22

IBUF : 12

OBUF : 10

===

Device utilization summary:

Selected Device : 3s200ft256-4

 Number of Slices: 37 out of 1920 1%

 Number of Slice Flip Flops: 41 out of 3840 1%

 Number of 4 input LUTs: 47 out of 3840 1%

 Number of bonded IOBs: 22 out of 173 12%

 Number of GCLKs: 2 out of 8 25%

Total memory usage is 64632 kilobytes

 A Few Snap Shots of Synthesis process

 Fig 2.9(c): Schematic of the FIFO converted from Verilog Code

 http://www.rfwireless-world.com

Fig 2.9(d): Schematic of the memory

 Fig 2.9(d): Schematic of the Counter

 http://www.rfwireless-world.com

Fig 2.9(e): Schematic of Full and empty logic

 Fig 2.9(f): Pin assignments

