Asynchronous FIFO Design

2.1 Introduction:

An Asynchronous FIFO Design refers to a FIFO Design where in the data values are
written to the FIFO memory from one clock domain and the data values are read from a different
clock domain, where in the two clock domains are Asynchronous to each other. Asynchronous
FIFO’s are widely used to safely pass the data from one clock domain to another clock domain

WRITE DATA READ _DATA
WERITE ENABLE ENABLE
FIFO
MEMORY
WERITE ADDRES S READ ADDRESS
¥ depth: 16 7
J memory width:8
BINARY O/P BINARY O/P
. . Counter
Countey WRITE POINTER READ POINTER
GRAY O/P GRAY Q/P
| -
WRITE_RESET
@ -
Synchronized Read
FULL Pointer
EMPTY
WERITE CLOCK
10 MELZ)
¢ / READ CLOCK
(50 MHZ)

Fig 2.1 Asynchronous FIFO Design

2.2 DESCRIPTION OF FIFO DESIGNED

The above figure’s refers of an Asynchronous FIFO, it will be better if each block is

explained
» FIFO MEMROY

This is the heart of the FIFO, the depth of memory is 16 bits and width is 8 bits,
It has an the following inputs
Write Data (8 bit), Write Enable, Read Enable, Write Clock, Write address (4 bit), Read Address
(4 bit) And an output i.e. Read Data (8 bit)

Data which is to be written and the address where it has to be written is supplied at the
input port write data and write address. At the positive edge of the clock when Write enable is

http://www.rfwireless-world.com

enabled so now the data is been written into the FIFO memory, now it has to be Read out, for
that to happen Read enable should be Enabled and the address from which the data has to be read
should be specified at the input port Read address.

This is the Memory operation in brief .now we have to control the memory in such a way
that it meets the requirements of the FIFO.

» BINARY & GRAY COUNTER

We need to design a counter which can give Binary and Gray output’s, the need for
Binary counter is to address the FIFO MEMORY i.e. Write and Read address. And the need of
Gray counter is for addressing Read and Write pointers.

Once the counter with binary and Gray code output is designed it is then Port mapped
with Memory’s Read address, write address, Read pointer, Write Pointer.

The Use Full and Empty logic for addressing the memory
Empty: the counter takes Empty signal and increments the Read address depending on this.
Full: when ever the Full signal is high the counter should not increment write address

If (~EMPTY) If (~FULL)
Increment Read Address Increment Write Address
Else Else
No Increment no increment

» SYNCHRONIZER’S

Synchronizers are very simple in operation; they are made of 2 D Flip Flop’s.
As the FIFO is operating at 2 different clock domains so there is a need to synchronize the Write
and Read pointers for generating empty and full logic which in turn is used for addressing the
FIFO memory.
The Figure below shows how synchronization takes place; the logic behind this is very simple.
What we are trying to do over here is, passing the Write Pointer to a D Flip Flop which is
driven by the Read clock and in the same manner the Read pointer is fed to a D Flip Flop
which is driven by Write Clock, so as a result of this we get Read Pointer (which is
operating under Read clock) and Synchronized Write Pointer which is also operating
under Read clock, and the same with Write pointer and Synchronized Read Pointer, so
now we can compare them and derive a logic for Generating Empty and Full conditions,
which is the most important design part of this FIFO

This is Comuming from
. . Read Clock
This is Comuring fro
et Clock (mw““)‘ Synchronized Synchronized Domain (50 M)
Dergatn DFF Writ Pointer ~ Read Pointer DFF

Write Pointer Read Poinier

ks
Read Clock ’7 W Write Clock

(50 Miz) (10M)

http://www.rfwireless-world.com

Fig 2.2: Synchronizer Logic

» EMPTY AND FULL LOGIC BLOCK
In the above section we discussed mainly on the synchronizing part,
| think the figures below are self explanatory

Synchronized Read
Pointer
FULL SIGMAL
FULL
LOGIC
Write pointer
Synchronized Write
Pointer ERMPTY SIGMAL
ERPTY
LOGIC

Read Pointer

Fig: 2.3 Empty and Full Logic
If ((synchronized Write pointer = = Read pointer) &&
(Synchronized Write pointer [3:0] = = Read pointer [3:0] then
Empty=1,
If (Write pointer= = {~ synchronized Read pointer [4:3], synchronized Read pointer [2:0]) then
Full=1;
Fig: Empty & Full logic generation

2.3 RESULT ANALYSIS (OUTPUT ANALYSIS)

2.3.1 Output Waveform 1

http://www.rfwireless-world.com

NN NNV NVVVVVVYVY £

1+ 8+ 8+ 5+ 8+ 8+

Cursor 1

Read Enable O
. . No Read Write Enahle =0
}Wnte_Enale is Data is begin Written into Operation Data is heing Read From . No Write Operatin
the FIFO when Write enahle the FIFO when read emhlt_a signal
Write Operation is signal is set is set
Enahled

Fig 2.4: Output Waveform 1

B memony - Atopdifo_memonmemon_block

Write
Clock

Opera
10AThz

Read
Clock

Operati
50 Mhz

—_— —_— =
00000000 (000010 00001 itk 0000117 00001000 QUO0i00: 0001101100011 111300101011 XXHXKHXH HHKHKKKX

0000000a | Xxxxxx HHMMNMMMMN HHHHHENX HMMMMMMN HMMMMMNMM HNHNXXXNNX

VV VYV VVVVYVY

DATA BEGIN WRITEN INTO THE FIFO MEMORY BUFFER

Fig 2.5 Output Waveform 2

The above waveform is analyzed below,
The Read clock is operating at 50 MHz and Write Clock is operating at 10 MHz
System is first Reset and then Set, the operation begins
To start with the Write_enable signal is high(i.e. Write operation is active)
Read_enable is set to ‘0’ (Read operation disabled)
Input data is fed into the FIFO memory and its being written in the memory as shown in
Fig
To start with values 5,6,7,8,9,23,31,41 are written into FIFO memory as you can see in
Fig 2..
The write address keeps on incrementing because(Write_enable= = 1)
At 500 ns Read Enable is set to ‘1’(enabled) and the Read address starts incrementing
and data which was written into the FIFO memory comes out in the order it was written(

http://www.rfwireless-world.com

First In First out i.e. The Data which was written first into the FIFO memory is being
Read out first i.e. 5 is readout first then 6 ,7,8,23,31,41

» We can also notice that the Read and Write Pointer’s are synchronized

» The Empty and full conditions will be explained in next waveforms

2.3.2 Output Waveform 2

B memory - Atop/fifo_memony/memony_block

Qo0o0o000 00010111 00000110 00000111 00001000 00001001 00011011 00011111 00101011 00001000 00001000
0000000& | 00001101 (00001001 00101011 00101011 00101011 00001107

The FIFO Memory is Filled, the last memory
location has heen writien
hence the FULL Flag is Set to HIGH

Fig 2.6: Output Waveform 3
The above waveform is analyzed below,
» Once the FIFO memory is filled the Full flag goes high.

27 H 43 13 23

=

5 E 7]] 10 11 12 13 14 [f]
I e IE 17 iz] il i iz i JEE i I
3 5 4 13 15 14 10 11]]
1216 17 i JE} il il i 14 i i] I
1 i7 T L 1z] {15 14 10 11 i3 IE
] (5 7 5 4 12 13 15 14 10 11
167P251 ps
Write address is now reached the FUIL =1
last Address ie 15 hecasue data has
Synchronized Write and Read i.e data is written into the last Location of heen writien into
Write & Read Pointers are FIFO the last FIFO
Paointers synchronized menory Location

http://www.rfwireless-world.com

Fig 2.7: Output Waveform 4

> As we can see from the waveform when the write_Address reached 15 i.e.
The FIFO memory is filled hence the Full signal goes high
» Empty signal goes high when ever the data which is being written into the memory is
Read out

2.3.3 Output Waveform 3

il]

(ERVIER R
i o

10 11 2 {13 il 132 I\{Q iE
a0 A1 23 ¥4 b (=T
T3 3156 4 0 11 4 24125 30 3T
2 {13 115 J1a o {7 I B LE0 |
I Y N T R] 24 125 VI il
4 12 [y s 4 ji0] 27 26

'
'
L
L
L
-
"
-
'
'
L
L

E™
£
k"
-
E3
EY

Data Being

. . : Daia being Read
- s s - Read and Write address are s chronized to
Empiy Signal Goes High ¥y from the FIF
Ilvmn;;'](l)mm w]l.e)tlyﬂl.e]gDaia w}ieisc]l iz heen Written into the Memoxy each other .hecasue of the Synchronizers® which :‘:m - °
Memory is heen Read out we have exmployed for Synchronization Y
Buffer

Fig 2.8: Output Waveform 4

» All the operations shown again for all cases

http://www.rfwireless-world.com

JBENEDEY S S D E]

iR} 3 (Bl R

”
-
'
-
'
s
'
'
-
'
-
’
'
-
'
-

Cursor 1

Write clock operating at
Read Clock Operating at 50 ihz
10N Ihz

Fig 2.8(a): FIFO operation for different clock frequencies
> Here we can notice that even if we change the write and read clock frequencies the FIFO
design works

2.4: TEST BENCH FOR FIFO

Write_Data

Wiite clock
Read clock

STIMULAS FIFO_TOP.V
Yirite Enahle

TEST.V

Read_FEnable

Write Reset

Read_Reset

Read_Data

Full

TEST BEMNCH FOR TESTING FIFO

Fig 2.9: Test Bench
2.3.1Stimulus Block

http://www.rfwireless-world.com

We now write the stimulus block to check if the Asynchronous FIFO Design is
functioning correctly. In this case we must control the following
» Write & Read Clock’s
» Write & Read Resets
» Write & Read Enable
» Write Data

So that the regular function of the Asynchronous FIFO and the Reset and Enable
Mechanism are both tested, we use the Waveform shown in Fig 2.9(a) to test the Design,
Waveform’s for Write clock, Read Clock, Write & Read Resets , Write & Read Enable are
shown.
Data out, Empty and full signal’s are then monitored. as we can see in the fig 2.9(b)

Stimulus Block
module th_top();

reg wr_clk,rd_clk;

reg[7:0] data_in;

wire[7:0] data_out;

wire rd_empty,wr_full;

reg reset_w;

reg reset_r;

reg write_enable,read_enable;

top top_1(.wr_data(data_in),
.rd_data(data_out),
wr_clk(wr_clk),
.rd_clk(rd_clk),
.w_reset(reset_w),
.r_reset(reset_r),
.write_enable(write_enable) ,
.read_enable(read_enable),

.empty(rd_empty),
full(wr_full));

initial

begin
#0data_in=8'h0;
#50_000 data_in=8'n00000001; // DATA WHICH IS SUPPLIED
#80_000 data_in=8'h2;
#70_000 data_in=8'h3;
#79_000 data_in=8'h4;
#80_000 data_in=8'h5;
#40_000 data_in=8'h6;
#60_000 data_in=8'h7;
#50_000 data_in=8'h8;
#50_000 data_in=8'h9;
#20_000 data_in=8'h10;
#70_000 data_in=8'h11;
#80_000 data_in=8'n12;
#19_000 data_in=8'h13;
#10_000 data_in=8'h14;
#80_000 data_in=8'h15;

end

initial
begin

wr_clk=1'h0;
write_enable=1'b0;

http://www.rfwireless-world.com

read_enable=1'b0;
end
initial
always
#50000 wr_clk=~wr_clk; //end /I READ AND WRITE CLOCK GENERATION
rd_clk=1'b0;
initial
begin
always
#10000 rd_clk=~rd_clk;
end
initial
reset_r=1'h0;
begin
initial
#5000 reset_r=1'b1;
/lend
initial
reset_w =1'h0;
initial
#5000 reset_w=1'b1;
initial
#5000 write_enable=1'n1;
initial
50000 read_enable=1'b1;
initial
begin
#1000000000 $finish; end
initial
$monitor("$time data_out,empty ,full= %d %d %d",data_out,rd_empty,wr_full);

endmodule

Once the stimulus Block is completed, we are ready to run the stimulation
and verify the functional correctness of the design block. The output obtained when the
stimulus and design blocks are stimulated is shown in Fig 2.9(a) and 2.9(b)

http://www.rfwireless-world.com

| wave - default

rs I B B B @ [Ay A A |
’ (LR iR
4 001 12 371 Y516 17 f8 16 {17 ifE0 2
s 0 /1 3 D6 2 T a8 @ B D @l) @D e diia
4 LU L L LK
> l i
v i
’ ! B
’ |
’
Read Clock
Write clock Generation Full
generation signal
L L L L L L DL
\ 500 nz Tus 1500 nz

Curzor 1

gl wave

Data is supplied through test Bench

Reset & Enable signals generaied by
Test Bench

Fig 2.9(a) : Stimulus Waveform

1573789 ps

Data is heen checked at output
port

http://www.rfwireless-world.com

Workspac H & X

E Instance i‘
= tb_top
1.1 top,
o Hik
HiM

£ wave - default

b topdwr_clk

Ab_top/!

rd_clk

Ab_top/data_in

Sth too/data ok

I

$hirme data_gub.empty full=
WSk 23 un

$hime data_
WSl 30 Tun
$hime data_olt empty full=
$hirme data_oub empty full=
$time data_out gmpty full=
$hirme data_out,efpte full=

SO TR s e

211

2100
w0
w10

2110

2100
w0
w10

2110

2100
w0
w10

2111

Out put data, Empty condition
& Full condition are momtored
m the Test Bench

.

Fig 2.9(b): Monitoring output’s (out put of stimulus)

2.5 Logic Synthesis

Logic Synthesis is the process of converting a high level description of the design into an

optimized, gate-level representation, using the cells in the technology library.

Logic Synthesis tool accepts high level descriptions at the register transfer Level (RTL).
And a technology library produces an optimized gate level net list, Translation, Logic
optimization, and technology mapping are the internal process in a logic synthesis tool and
are normally invisible to the user. Not all verilog constructs are acceptable to a logic synthesis

tool.

Synthesis Summary For Asynchronous FIFO

* Advanced HDL Synthesis *

Advanced RAM inference

Advanced multiplier inference ...
Advanced Registered AddSub inference ...

http://www.rfwireless-world.com

Dynamic shift register inference ...

HDL Synthesis Report

Macro Statistics

LUT RAMs 1
16x8-bit dual-port distributed RAM: 1
Adders/Subtractors 12
5-bit adder 2

Registers : 10
1-bit register 12
5-hit register ;8

Comparators 13
4-bit comparator equal 01
5-bit comparator equal 12
Xors .8

1-bit xor2 18

* Final Report *

Final Results

RTL Top Level Output File Name : top.ngr
Top Level Output File Name : top
Output Format :NGC
Optimization Goal : Speed

Keep Hierarchy :NO

Design Statistics
10s 124

Macro Statistics :

RAM 1

16x8-bit dual-port distributed RAM: 1
Registers 10

1-bit register 2

5-bit register .8

Comparators 3

4-bit comparator equal :1

5-bit comparator equal :2

Cell Usage :

BELS 139
LUT1 4
LUT1_D 01
LUT2 116
LUT2_D i1
LUT2_L :3
LUT3 2
LUT3 L 4
LUT4 4
LUT4 L 14
FlipFlops/Latches 141
FDC 01

http://www.rfwireless-world.com

FDCE 121

FDP 01

FDR 118

RAMS 8

RAMI16X1D '8
Clock Buffers 12
BUFGP 12

10 Buffers 122

IBUF 112

OBUF 110

Device utilization summary:

Selected Device : 3s200ft256-4

Number of Slices: 37 outof 1920 1%
Number of Slice Flip Flops: 41 outof 3840 1%
Number of 4 input LUTSs: 47 outof 3840 1%
Number of bonded 10Bs: 22 outof 173 12%
Number of GCLKSs: 2 outof 8 25%

Total memory usage is 64632 kilobytes

A Few Snap Shots of Synthesis process

Opfions | Symhols | Design |

— | wr_data<7:0>rd_data<7:0>

RTL Design Hierarchy

—rd_clk

— read_enable

synthesis of all sub blocks ——r reset empty

Pins , Mets, and — write_enable

instances created after
cynthesis

— wr_clk

— w_reset full

Schematic diagram created by
Swnthesiz Teol(Plink Project
MNavigator)

Fig 2.9(c): Schematic of the FIFO converted from Verilog Code

http://www.rfwireless-world.com

fo_memon
- read
read_to_wite
- waite_logic
wiite_to_read
. _n0002_imp

other modules of
the whole block

astance Contents

Pins

“Mets

= Instances

i Mram_memary_block1

' tead_datal7)_imp_read_data(?)]1 read_data[B]_i

[s N
— e
L
Avonscan:
PIRET TP
s -
N
ABDABSID-
[
LA

=

Schematic of FIFO memory created by Synthesis

tool

Fig 2.9(d): Schematic of the memory

- fifo_rmemory
“read
tadd__n0000
tdwor__n0003
Mwor__n004
tror__n0005
tdwor__n000&
_n0002_imp
- read_ta_write
~nite_logic
“wirite_to_read
dif_o

dff_1

"""" _n0002_irmp

aztance Contents

T

a0z

FDCE

FOCE

Fig 2.9(d): Schematic of the Counter

http://www.rfwireless-world.com

ad

(=B

fifo_memary

Madd__n0000
td=or__n0003
t=or__n0004
twar__n0005
war__n000&
_n0002_irmp
[read_to_write

[#- write_logic

istance Contents

P

=
Schematic = _nl002_imp

Fig 2.9(e): Schematic of Full and empty logic

1L %]

*

_ol x|
1/0 Name (+/8-Birection] Loc | Bank 1/0 Std 4 |
w_respl/ Input 13 BAME.3
wrj‘ata<?> Input 14 BAME3
wirf data<Br |Input 15 BANK3
wf_data<5> Input ?n‘IS BAME3
wi_data<dy [Input 4 BANK3 b
wi_data<3y [Input 16 BaNK3
wi_data<2y |Input flE BANK3
wirdata<ds [Input
wr_aata<0> Input
wr_clk Input mll BAMKEA
wiite_enable| TR N2 BAME.3 -
4 | »
#] Group|1/0 Direction] Lok 170 Std. Vret
8|wr_data Input
8rd_data [Dutput 5

Aasigning Package Ping

The pins Alloted on the FPGA board

Fig 2.9(f): Pin assignments

http://www.rfwireless-world.com

